Functional display of complex cellulosomes on the yeast surface via adaptive assembly.

نویسندگان

  • Shen-Long Tsai
  • Nancy A DaSilva
  • Wilfred Chen
چکیده

A new adaptive strategy was developed for the ex vivo assembly of a functional tetravalent designer cellulosome on the yeast cell surface. The design is based on the use of (1) a surface-bound anchoring scaffoldin composed of two divergent cohesin domains, (2) two dockerin-tagged adaptor scaffoldins to amplify the number of enzyme loading sites based on the specific dockerin-cohesin interaction with the anchoring scaffoldin, and (3) two dockerin-tagged enzymatic subunits (the endoglucanse Gt and the β-glucosidase Bglf) for cellulose hydrolysis. Cells displaying the tetravalent cellulosome on the surface exhibited a 4.2-fold enhancement in the hydrolysis of phosphoric acid swollen cellulose (PASC) compared with free enzymes. More importantly, cells displaying the tetravalent celluosome also exhibited an ~2-fold increase in ethanol production compared with cells displaying a divalent cellulosome using a similar enzyme loading. These results clearly indicate the more crucial role of enzyme proximity than just simply increasing the enzyme loading on the overall cellulosomal synergy. To the best of our knowledge, this is the first report that exploits the natural adaptive assembly strategy in creating artificial cellulosome structures. The unique feature of the anchoring and the adaptor scaffoldin strategy to amplify the number of enzymatic subunits can be easily extended to more complex cellulosomal structures to achieve an even higher level of enzyme synergy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production.

Yeast to directly convert cellulose and, especially, the microcrystalline cellulose into bioethanol, was engineered through display of minicellulosomes on the cell surface of Saccharomyces cerevisiae. The construction and cell surface attachment of cellulosomes were accomplished with two individual miniscaffoldins to increase the display level. All of the cellulases including a celCCA (endogluc...

متن کامل

Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production.

In this paper, we report the surface assembly of a functional minicellulosome by using a synthetic yeast consortium. The basic design of the consortium consisted of four different engineered yeast strains capable of either displaying a trifunctional scaffoldin, Scaf-ctf (SC), carrying three divergent cohesin domains from Clostridium thermocellum (t), Clostridium cellulolyticum (c), and Ruminoco...

متن کامل

Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase

BACKGROUND Cellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP), combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic ...

متن کامل

Anti-Synchronization of Complex Chaotic T-System Via Optimal Adaptive Sliding-Mode and Its Application In Secure Communication

In this paper, an optimal adaptive sliding mode controller is proposed for anti-synchronization of two identical hyperchaotic systems. We use hyperchaotic complex T-system for master and slave systems with unknown parameters in the slave system. To construct the optimal adaptive sliding mode controller, first a simple sliding surface is designed. Then, the optimal adaptive sliding mode controll...

متن کامل

Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol.

By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS synthetic biology

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2013